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Note 

Numerical Treatment of Rapid Equipartition Rates 

INTRODUCTION 

Many problems in computational plasma hydrodynamics and magnetohydro- 
dynamics are concerned with the spatial transport of mass, momentum, energy, 
and magnetic flux. The transport of mass and momentum arising from the hydro- 
dynamic motion of the fluid can be dealt with numerically either by an Eulerian 
or by a Lagrangian description. For either description the transport of energy 
through the fluid by thermal conduction or the diffusion of a magnetic field can 
be given one of two alternative numerical formulations: explicit or implicit. 
Calculations in one space dimension by Hain et al. [I] and in two dimensions by 
Roberts and Potter [2], Lindemuth and Killeen [3], Freeman and Lane [4], and 
Duchs [5], as well as many others, demonstrate how various spatial transport 
problems can be handled numerically. 

For calculations involving a single fluid the timestep d t is restricted by numerical 
stability conditions if an explicit formulation is adopted, e.g. the Courant- 
Friedrichs-Lewy condition [6]. If an implicit method which guarantees numerical 
stability is used, then it is often the time rate of variation of fundamental variables 
such as the temperature T or density p that determines the choice of At for reasons 
of accuracy. 

When more than one fluid is being studied there may be local exchange of 
energy between the fluids, e.g. Coulomb interaction between ions and electrons, 
electron-photon interaction. In most multifluid calculations [l, 2,4] it is recognized 
that the rate of energy exchange between the fluids (the equipartition rate) may 
in some circumstances become so rapid that special measures must be taken to 
avoid a numerical instability [4]. The simplest cure to this problem is to enforce 
a restriction on d t set by the equipartition rate. Such a solution is however usually 
undesirable. Consider for example as a simple model an N-component system 
whose composition changes with time due to various types of “radioactive” decay. 
The fractional densityf, of a component which decays at the rate wk = l/~~ obeys 
a differential equation of the type 

fk = -%h + Sk 2 k = l,N, (1) 

where the source term S, may be a function of the other component densities. 
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If a set of coupled differential equations of the type (1) is solved numerically, then 
it is obviously not desirable to use a timestep restricted by 

At m Min(Tl,,k = l,N), (2) 

since the decay times TV may vary from, say, 10-lo-lO1o sec. 
The plasma calculations referred to above usually aim at studying physical 

phenomena which occur during a period of order 10”lo* times longer than the 
timestep At determined by the spatial motion. Laser fusion calculations by 
Nuckolls et al. [7], Clarke et al. [8], and Christiansen and Ashby [9] aim similarly 
at studying the phenomena occurring in a compressed and exploding superdense 
plasma pellet. Here the equipartition rates encountered are several orders of 
magnitude larger than those usually met in MHD (magnetohydrodynamic) 
problems. Common to the MHD and laser fusion calculations is a series of physical 
processes each characterized by a typical timescale TV . To enforce a condition 
on At of the type (2) may make these calculations costly, if not impracticable, and 
in this paper we address ourselves to the question of how to avoid such a restriction. 

Section 1 defines the relevant energy equations of a two-component plasma. 
Section 2 describes a simple method for accurately treating the equipartition of 
energy between these two components. The method can be applied if the energy 
equations are transformed into time-centered finite-difference equations which are 
solved by either an explicit or an implicit treatment of the heat conduction term. 
The equipartition term itself is isolated from all the other terms and treated 
explicitly by the use of exponentials. Section 3 summarizes the method while its 
limitations and applicability are discussed in Section 4. 

1. EQUATIONS OF THE PLASMA 

We consider a plasma consisting of only two fluids representing ions and 
electrons, moving in one, two, or three space dimensions and described by two 
temperatures Ti and T, . The restriction to only two fluids avoids unnecessary 
complications in the algebra which in the case of three or more fluids (a-particles, 
radiation, etc.) would swell the bulk of this paper; the method that emerges from 
the presentation in Section 2 can in principle be applied to multifluid calculations 
(see Section 4). 

The equations of state for the ions and electrons are 

Ui = ui(p, Ti), pi = P~(P, Z), (3) 

U, = U~.<P, TcJ, me = PAP, Te), (4) 
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where Ui , U, and pi , pe are the internal energies and pressures, respectively. The 
physical density p is in the usual notation 

p = nimi -I- n,m, , (5) 

ni , n, being the number densities. We assume the ions to behave as a perfect gas 
while the electrons may obey a degenerate gas law. The energy equations (First 
Law of Thermodynamics) are written separately for ions and electrons as 

where the specific heats are obtained from (3) and (4) as 

and for brevity (C!,), = C, , the specific heat of an ideal gas. The quantities W, 
and W, can involve space derivatives and include contributions from thermal 
conduction, energy release due to thermonuclear reactions, emission and absorp- 
tion of radiation as well as the terms -pi(dr/dt) (for ions) and -p,(dv/dt), 
(aU,/i3p), (a~/?%) for electrons, ZI being the specific volume. K is the rate at which 
energy is transferred from ions to electrons due to Coulomb interactions [lo]. 
The analytic form of K is usually 

AT = CATi - Te)(1/T)7 

where T is the equipartition time given by Spitzer [IO]: 

(8) 

and the constant a depends on mi and the charge number 2. The expressions (8) 
and (9) are obtained assuming that ions and electrons obey perfect gas laws. If 
the electrons obey a degenerate gas law the expressions (8) and (9) must be changed 
according to the degree of degeneracy. In the present context, effects from 
degeneracy of electrons only appear from the specific heat (C,), not being equal 
to C, . Similarly one may use different expressions for K if it represents an energy 
exchange rate between fluids other than ions and electrons. Our method however 
assumes K to vary linearly with the temperature difference between the fluids 
involved, i.e., if applied to multifluid calculations all energy exchange terms 
between fluids j and I should vary as Kj, - (Tj - TJ. 
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The notation may be simplified by introducing: 

Subtracting (7) from (6) we then obtain the linear inhomogeneous equation: 

If v, w, and /3 are assumed to be constant over a short time interval, 0 < t < 22, 
the solution to (10) is 

5(t) = (5, - (d4N e-wet + (d4), 0 < t < at, (11) 

where c,, = ((t = 0). 

2. METHOD OF SOLUTION 

In order to solve Eqs. (6) and (7) we transform these into time-centered finite- 
difference equations, i.e., for Eq. (7) 

(Cv),“-112(T,n _ T;-l)/‘,t’- = J47;-1/2 + ~+1/2, (12) 

and similarly for Eq. (6); dt”-1/2 denotes the time interval between the discrete 
time levels n - 1 and n; superscript IZ - 4 indicates the time halfway between 
n - 1 and n. If we know T:-’ and Tin-‘, an algorithm is needed to evaluate Ten 
from (12) and similarly for Tin. Since both We and K are functions of T, and Ts 
we split the terms at time level n - fr such that Eq. (12) becomes 

(d’(C,); + (1 - e’)(C,);-‘)(T,” - T:-‘)/&n-1’2 

= 8” W,” + (1 - 0”) W,“-’ + BK” + (1 - 0) K? (13) 

The quantities 0, 0’, and 0” measure the degree of implicitness [6] in the approxi- 
mations to the terms Kn-lj2, (C,)~“‘” and Wr-1’2, respectively. This splitting 
principle is often adopted whenever We contains a heat conduction term [6]. For 
calculations in one space dimension the Crank-Nicholson method (0” = +) is 
often applied either to the heat conduction term [l] or to all the terms of We [9]. 
In two-dimensional calculations an explicit method (0” = 0) as described in [2] 
can be applied based on the Lax-Wendroff scheme [6]. An implicit method 
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(0” # 0) in two dimensions necessitates a further splitting of the two spatial 
components of the heat conduction term [6] and is used in [3]. 

A commonly adopted procedure for the numerical treatment of the term K 
retains only the part (1 - 0) K”-l when solving Eq. (12) and the similar equation 
for Ti . The values Tin and Ten thus obtained are subsequently modified taking 
into account the part OK” which is now a function of the recently obtained values 
Tin and T,“. Such a procedure is numerically stable since one can derive from 
Eq. (12) and the similar equation for Ti that 

5n = 1 - (I - e) 43 p-1 + eflyn + (1 - en) ~“-1 dtn-li2 
1 + 043 i + e43 2 (14) 

where the parameter E is defined as 

E = w At-112. (15) 

In the limit E --f co (rapid equipartition rate) the amplification factor A = tn/e-l, 

For 0 = 4 one gets A = -1 which in effect corresponds to “swapping” the two 
temperatures. The fully implicit case 0 = 1 gives A = 0, equivalent to setting 
Tin = Ten, while the explicit case B = 0 leads to an instability as observed in 
L 2, 41. 

The method to be described is used by the laser fusion code MEDUSA [ll]. 
We assume that Eq. (13) is solved by an implicit scheme and that this is done 
iteratively in order to improve successively on the value We* = Wen(Ten, T,“). 
The method is simply based on taking an average of the analytic expression (11) 
over the time interval Atn-1/2. For this we require 

(pLG3t) = -A- s &“-‘I2 
At-V e-wBt dt 

0 

= ($I-1 (1 - e-‘6). (17) 

The temperature difference at time level n - + is found from Eqs. (11) and (17) 
using co = Cn-l. We get 

p-112 = (,,-I _ ($)n-1’2)( l -$rB)n-1’2 + ($)n-1’2. (18) 

The energy exchange term to be used when solving Eq. (12) then becomes 

K’+W = C VW n-112 n-l/2 5 - (19) 
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That this term is correct for all values of E can be seen by forming the limits E -+ 0 
and E -+ 00 of the amount of energy exchanged during the time interval d~-l/~. 
Since 

in-1~2 Ap-l/2 = cvEn-l/2~n--1/2 9 

we get for E -+ cc, 

jy+W At+-W + c,(l/B”-‘l”)(~“-’ + yW2 At+l/2), 

and for E -+ 0, 
Kn-112 At+-lP ---f 0. 

Both these limits are equivalent to those obtained by integration of the analytic 
expression (11). 

In order to use the expression (19) in solving Eq. (12) it is necessary to work 
out three quantities at time level n - 4. We set 

En-1/2 = o~-1/2 Ap-1/2 = (&,p + (1 - 0) ,-I) At”-l/2, (20) 
p-1/2 = pp + (1 - lg’) p-1, (21) 

since w and /3 are functions of T, and p. To find the value of @+1/2 we avoid a 
cumbersome summing up of all the contributions to the source terms IV, and Wi 
by transforming Eq. (10) into finite-difference form, i.e., 

v-1’2 = [(c” - [n-l)/Ap-l/2] + @w”/c,> ~7+1/2. (22) 

3. SUMMARY 

To summarize the procedure for the present treatment of the energy exchange 
term we assume as mentioned above that Eq. (13) and the similar equation for Ts 
are solved by iteration. The following five stages illustrate how a single step from 
level n - 1 to level n in a calculation can be performed. 

(1) At the first iteration assume that the new quantities Tin and Ten take the 
same values as c-l and T,“-‘. 

(2) Evaluate l -lj2 and 19,-112 from Eqs. (20) and (21) and CJP--~/~ from Eq. (22). 
At the mth iteration the values of 512, ,!P, w*, and Kn-l12 from the m - 1 
iteration are used. (If m = 0 then of course 5” = p--l, p = /3+-l, 
wn = Wn--l, and p--l/2 = p-W)e 

(3) Find Kn-lj2 from Eqs. (18) and (19). 

sS1117/3-S 
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(4) Calculate all other contributions to the source terms We and Wi , i.e., 
thermal conductivities, thermonuclear reaction rates, etc. 

(5) Solve Eq. (13) to give a new value of Ten (similarly for T,“). The next 
iteration starts at (2). 

4. APPLICATIONS AND LIMITATIONS 

The procedure described in Sections 2 and 3 is employed by the two-fluid code 
MEDUSA [ll] which has been used for laser fusion calculations in one space 
dimension [9]. Section 2 applied the method to the equipartition of energy between 
two fluids, but in principle it can be used for calculations on a multifluid system. 
One then gets a set of equations of the type (11) and the solutions for the tempera- 
ture differences {ja = Tf - Tl will contain several terms of the form f(t) e--wjzt, 
where f(t) may be 1, t or cos ajzt. These solutions must be examined in order 
to decide if the averaging (Eq. (18)) is suitable. 

The application of the method is, however, confined to those cases in which 
Eq. (13) is solved implicitly and by iterations. For B = 4, a second-order treatment 
is formally obtained. If no iterations are made the method degenerates to a first- 
order treatment as can be seen from Section 3, and similarly if Eq. (13) is solved 
explicitly (0” = 0). In such cases d t is restricted by the equipartition rate as reported 
in [12] and [13]. 

Furthermore it should be noticed that the method for solving Eq. (13) by itera- 
tions does not in general ensure convergence of the solutions. In some situations 
a lack of ability to center E, /3, and y (Eqs. (20)-(22)) can arise, causing a small 
rate of convergence. This difficulty, which is inherent in all splitting techniques, 
may be overcome either by further restrictions of the permissible time variations 
of T, and Ti via At or simply by ignoring the lack of convergence of T, or Ti if 
the resulting physics is justified. These two principles have been adopted in the 
laser fusion calculations [9] in which a spatial variation of E ranging from lo5 
(compressed, cold plasma) to lo-’ (tenuous plasma with hot electrons) has been 
encountered at a given instant. 

The method described in this paper has been developed to confine the number 
of timesteps required to carry out plasma calculations in one space dimension 
without a significant increase in computing time. Although the method does 
make use of an exponential library function, this does not in practice inhibit its 
application to two- or three-dimensional calculations. The small increase in 
computing time arising from the evaluation of Eqs. (18)-(22) rather than the 
simpler explicit formulas (8) and (9) is marginal for complex calculations which 
treat thermal conduction, radiation, or thermonuclear burn-up of a plasma. The 
distinct advantage of using the expression (18) is its validity for all values of E. 
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